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The main aim of this paper is to relate instability modes with modes obtained
from proper orthogonal decomposition (POD) in the study of global spatio-
temporal nonlinear instabilities for flow past a cylinder. This is a new development
in studying nonlinear instabilities rather than spatial and/or temporal linearized
analysis. We highlight the importance of multi-modal interactions among instability
modes using dynamical system and bifurcation theory approaches. These have been
made possible because of accurate numerical simulations. In validating computations
with unexplained past experimental results, we noted that (i) the primary instability
depends upon background disturbances and (ii) the equilibrium amplitude obtained
after the nonlinear saturation of primary growth of disturbances does not exhibit
parabolic variation with Reynolds number, as predicted by the classical Stuart–
Landau equation. These are due to the receptivity of the flow to background
disturbances for post-critical Reynolds numbers (Re) and multi-modal interactions,
those produce variation in equilibrium amplitude for the disturbances that can be
identified as multiple Hopf bifurcations. Here, we concentrate on Re = 60, which
is close to the observed second bifurcation. It is also shown that the classical
Stuart–Landau equation is not adequate, as it does not incorporate multi-modal
interactions. To circumvent this, we have used the eigenfunction expansion approach
due to Eckhaus and the resultant differential equations for the complex amplitudes of
disturbance field have been called here the Landau–Stuart–Eckhaus (LSE) equations.
This approach has not been attempted before and here it is made possible by POD of
time-accurate numerical simulations. Here, various modes have been classified either
as a regular mode or as anomalous modes of the first or the second kind. Here,
the word anomalous connotes non-compliance with the Stuart–Landau equation,
although the modes originate from the solution of the Navier–Stokes equation. One
of the consequences of multi-modal interactions in the LSE equations is that the
amplitudes of the instability modes are governed by stiff differential equations. This is
not present in the traditional Stuart–Landau equation, as it retains only the nonlinear
self-interaction. The stiffness problem of the LSE equations has been resolved using
the compound matrix method.

1. Introduction
Vortex shedding behind a circular cylinder represents flow instability that begins

with the growth of disturbances by a linear temporal mechanism followed by nonlinear
saturation. This flow has also been identified as an example of a nonlinear dynamical
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system representing phase transition and instabilities for external flows by Sreenivasan,
Strykowski & Olinger (1987) and Provansal, Mathis & Boyer (1987). When this flow
is considered as a dynamical system, the transfer function is central with input
spectrum playing a residual role at the equilibrium stage. This is the case if the
system represents intrinsic dynamics. Huerre & Rossi (1998) refer to this flow as a
hydrodynamic oscillator at any post-critical Reynolds number. Here, the criticality
refers to the primary temporal instability, which is also described mathematically as
a Hopf bifurcation in the parameter space (Golubitsky & Schaeffer 1984).

The idea that the flow represents intrinsic dynamics is also bolstered by the
evidential success of Landau’s model in explaining supercritical amplitude saturation
that is independent of the initial condition. This idea seems to be supported by
various numerical studies of the flow in Jackson (1987), Zebib (1987), Morzynski,
Afanasiev & Thiele (1999) and Barkley (2006), who have predicted a critical Reynolds
number in the range 45 � Recr � 47. We note that all these simulations by different
methods are for a uniform flow over a smooth cylinder.

In real flows, bifurcation initiates with the linear temporal instability and thus the
possibility for the flow to be receptive to background disturbances is natural. In such
a scenario, the dynamical system acts as an amplifier, and hence input disturbance
spectrum is as important as the transfer function. The dependence of criticality upon
noise is often lost in the description of theoretical results for stability. However,
it stands out when one collates experimental evidences gathered over decades. For
example, Batchelor (1988) conjectured Recr to be between 30 and 40; Landau &
Lifshitz (1959) quoted it as 34, based on some unreported experimental observation.
Kovasznay (1949) reported Recr =40, while Roshko (1954) reported a value of 50
for the same. Kiya et al. (1982) obtained this value as 52 and Tordella & Cancelli
(1991) reported Recr = 53. The sensitive dependence of Hopf bifurcation or instability
on facility-dependent disturbances becomes even more evident, when one considers
the experimental results of Homann (1936), who showed Recr � 65. These interesting
results are also featured in Plate 2 of Batchelor (1988) and in Schlichting (1987, p. 18).
Such a high value of Recr has not yet been satisfactorily explained. In figure 3 of
Provansal et al. (1987) and figure 6 of Sreenivasan et al. (1987), different values of Recr

are reported for cylinders with different length (L) and diameter (D). Similar variations
of Recr were also reported earlier by Nishioka & Sato (1978), and the view expressed
in these references is that they are due to different aspect ratios of the models, as the
same tunnel was used for the individual experimental cases, i.e. the variations are due
to three-dimensionality of the flow field. One notes that the experimental models were
fixed from wall-to-wall in the tunnel, specifically, to avoid flow three-dimensionality.
However, this claim seemingly contradicts the observation in Williamson (1989) that
the flow remains essentially two-dimensional for Re � 180. A higher limit on Re

for three-dimensional effects has been obtained in the spectral element calculations
of Henderson (1997), where it was reported to be around Re =250. An alternative
explanation has been proposed in Sengupta et al. (2009b), where the authors argued
and experimentally demonstrated that the background disturbances in a given tunnel
are a strong function of the tunnel speed. Specifically, two cases of Re =45 and 53
were demonstrated using two cylinders with different diameters for each Re (5 mm
and 1.8 mm for Re = 53, 2.6 mm and 1.8 mm for Re = 45) at two different speeds
(17 cm s−1 and 46.9 cm s−1 for Re = 53, 26.1 cm s−1 and 37.8 cm s−1 for Re = 45).
In both the Reynolds number cases at lower speeds, the background free stream
turbulence (FST) at Strouhal frequency was higher by a factor of 10, compared to the
corresponding FST level at higher speeds. This difference showed up as a coherent
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shedding at the lower speed as opposed to very weak shedding at higher tunnel speeds.
This points to the receptivity aspect of the flow field to FST and may be the likely
explanation for the different Recr observed in the experiments of Sreenivasan et al.
(1987), Provansal et al. (1987) and Nishioka & Sato (1978), where different aspect
ratio cylinders were used. The variability and coupling between FST and tunnel speed
were not explored systematically. The variation of equilibrium amplitude with FST
was presented in figure 14 of Sreenivasan et al. (1987), which clearly shows a large
scatter in the growth rate for Re in the range between 50 and 60. Results for higher
FST levels clearly reveal Recr to be significantly higher than 47. This conundrum
of higher Recr for higher FST levels seems non-intuitive, but will be discussed later
in detail, with respect to some calculations for the FST cases. The role of FST can
be appreciated by looking at the definition plots for vorticity contours shown in
figure 1, for two sets of calculations: zero-FST computations shown in figure 1(b)
and with FST level of 0.06 % shown in figure 1(c). Details of FST models and their
uses in computing are described in Sengupta et al. (2009b) and a brief description is
also provided here in § 4. In figure 1, same contour levels are plotted for the cases
shown that indicate marginal differences in the contour values. The main effect of
FST is shown in slightly lower values of vorticity at the cores of the shed vortices,
as compared to the zero-FST case. This slight variation can show up as early onset
time of primary instability and lower values of Recr , when the FST levels are low.
Effects of higher FST levels are not considered here – those could be significantly
different. Some experimental results on the variation of equilibrium amplitude with
Re for moderate levels of FST are available in Sreenivasan et al. (1987).

So far, the highest value of Recr = 65 has been noted in the experiment of Homann
(1936) and it is not certain if this relates to the level of FST that led to a higher critical
Reynolds number. However, we also note a particular feature of this experiment. The
working medium used in the tunnel was a highly viscous oil that can also effectively
damp background disturbances, compared to commonly used fluids like air or water
used in other tunnels. Does it imply that the Hopf bifurcation at Re � 45 to 47
is bypassed in the experiments of Homann (1936), while it is not prevented above
Re = 65? One also notes that the experimental results in Strykowski (1986) show a
qualitative change in flow between Re =60 and 90. One of the aims of this paper is to
provide explanations for these experimental observations. This also provides insight
on the existence of multiple modes and their interactions during instability.

Giannetti & Luchini (2007) and Sipp & Lebedev (2007) have also focused on
bifurcation in recent times. Global instability associated with flows behaving either as
an amplifier or as an oscillator (or resonator) has been studied by Chomaz (2005) and
Marquet et al. (2008). In Marquet et al. (2008), the instability of a recirculating bubble
is studied to identify amplifier dynamics with two-dimensional wavepackets localized
in the upstream part of the bubble. In contrast, the oscillator dynamics is associated
with three-dimensional steady structures. In Chomaz (2005), the open flow dynamics
are discussed from a local as well as in the global instability context. According to
Chomaz (2005), the ‘local and global duality of nonparallel flow instabilities, which,
in a way, are analogous to the particle/wave duality underlying the theory of light
[or, more generally, quantum mechanics. . . ’.

The paper is formulated as follows. In the next section, the governing fluid dynamic
equations are provided along with a brief description of the numerical methods used
to solve them. This is followed by a detailed description of Hopf bifurcation and the
Stuart–Landau equation. In § 4, the role of FST in altering the primary instability
and buffeting of the wake is discussed. POD of the spatio-temporal data representing
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Figure 1. (Colour online) (a) Schematic of the physical and computational flow field, showing
the inflow, outflow and the FST introduced through the inflow. (b) Computed vorticity contours
for the flow at Re = 75, when no FST is introduced through the inflow. (c) Computed vorticity
contours for the same flow with an FST level given by 0.06 % corresponding to the data of
Norberg (2003).
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the wake dynamics is performed and analysed in § 5. In § 6, multi-modal interactions
governed by the Landau–Stuart–Eckhaus (LSE) equations are studied and compared
with the POD results. In addition, the disturbance field is reconstructed using the
linear growth/decay rates of leading modes and their interactions. A summary and
concluding remarks are given in § 7.

2. Governing equations and numerical methods for simulation of flow past a
cylinder

For the numerical simulation of the governing two-dimensional Navier–Stokes
equation, the streamfunction vorticity (ψ − ω) formulation is preferred because
of its ability to preserve solenoidality of both the unknowns. The introduction of
streamfunction as a variable automatically satisfies the divergence-free condition
(solenoidality) for the velocity field. This divergence-free condition combined with the
pressure–velocity coupling problem is the major source of error in DNS for instability
studies using primitive variables. The flow is computed here in an analytical O-grid
with 153 points in the azimuthal (ξ ) and 400 points in the radial (η) directions, with
the outer boundary placed at a distance of 20 diameters from the cylinder surface.
Details of the used formulation and the adopted numerical methods are provided
in Dipankar, Sengupta & Talla (2007) and Sengupta, Suman & Singh (2010), with
only a brief description provided here. The governing equations are written for an
orthogonal transformed (ξ − η) plane:
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Here, h1, h2 are the scale factors of transformation given by h2
1 = x2

ξ + y2
ξ and

h2
2 = x2

η + y2
η . The diameter (D) of the cylinder is taken as the length scale and free-

stream velocity as the velocity scale for non-dimensionalization. The time scale is
introduced from these two scales.

The loads (lift and drag) are calculated by solving the pressure Poisson equation
(PPE) for the total pressure (Pt ). The PPE is obtained by taking the divergence of the
momentum equation expressed in primitive variables. For the orthogonal curvilinear
coordinate system this equation is given by
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The no-slip boundary condition on the cylinder wall is satisfied by

∂ψ

∂η body

=0. (2.4)

An additional condition arising out of the no-slip condition is given by

ψ = constant. (2.5)

This condition is used to solve (2.1), while both (2.4) and (2.5) are used to evaluate
the wall vorticity (ωb) that provides the boundary condition to solve (2.2). At the outer
boundary (i) a uniform flow condition is applied at the inflow (Dirichlet condition
on ψ for the upstream part of the outer boundary) and (ii) a convective boundary
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condition is applied for the radial velocity at the outflow. Through the outflow part
of the boundary, shed vortices depart the computational domain smoothly, without
affecting the flow inside the domain. The radiative condition applied at the outflow
is given by

∂ur

∂t
+ uc(t)

∂ur

∂r
= 0, (2.6)

where ur is the radial component of velocity and uc(t) is the convection velocity at
the outflow at time t , obtained from the radial component of velocity at the previous
time step, i.e. uc(t) = ur (t − ∆t). The initial condition is given by the potential flow,
for the impulsive start of the cylinder from rest.

While solving (2.2), the nonlinear convection terms are discretized using a high-
accuracy DRP scheme of Sengupta, Sircar & Dipankar (2006) that provides near-
spectral accuracy. A second-order central differencing scheme is used for the Laplace
operator and a four-stage Runge–Kutta integration scheme is used for time-marching.
A sixth-order non-periodic filter is applied on the vorticity field to remove spurious
disturbances due to aliasing and other nonlinear numerical instability problems, with
the details on filters given in Sengupta, Bhumkar & Lakshmanan (2009a).

The location of upstream boundary can contribute significantly to the accuracy
of the computed solutions, as reported in appendix A of Sipp & Lebedev (2007).
A detailed discussion on various numerical approaches in the literature is given
in Giannetti & Luchini (2007), who have used immersed boundary method to avoid
committing additional errors due to aliasing via discretization of dissipation. Working
in a Cartesian grid avoids aliasing error committed in discretizing dissipation terms
in the transformed plane. The use of Cartesian grids can bring in additional issues
of interpolation at the solid boundary, and forcing terms are necessary in mass and
momentum conservation equations. Issues related to interpolation errors have been
discussed in detail in Sengupta et al. (2010) and other references given therein. In
contrast, we have used a high-accuracy compact scheme in the transformed plane, as
reported in Sengupta et al. (2006, 2010) and Dipankar et al. (2007) for this problem.
The choice of time-integration method is also another source of numerical problem.
If one uses more than two time levels, additional spurious mode(s) are invoked. Such
modes siphon off the high-frequency components of the initial condition, which are
removed subsequently during time marching; see the discussion in Sengupta et al.
(2006) for further details. For problems of flow instability, transition and turbulence,
this could be a major source of error, as chaotic dynamical systems are sensitively
dependent upon the initial condition. Hence, removal of a component of the initial
condition by spurious modes can alter the dynamics qualitatively and quantitatively.
Here, to avoid this pitfall, we have used a fourth-order accurate, two-time-level
Runge–Kutta method that does not suffer from this problem. Also, for a higher
accuracy of the numerical solution, we will be able to reconstruct the POD mode
amplitudes with unprecedented accuracy.

Discretized Poisson equations are solved using the Bi-CGSTAB variant of the
conjugate gradient method of Van der Vorst (1992). Solving (2.3) requires the
Neumann boundary condition on the physical surface and at the far field and
these are obtained from the normal (η) momentum equation given by
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Figure 2. For caption see facing page.

Computational results for the flow past a cylinder are shown in figure 2(a, b).
Time variation of vorticity at a near-wake point R (xR = 0.5044, yR = 0.0) with
respect to the centre of the cylinder is shown in the top frame for Re = 60. At the
bottom frame, we have shown the logarithm of the envelope of the amplitude. In
figure 2(c, d ), experimental results from Strykowski (1986) for Re = 49 are shown for
the streamwise fluctuating velocity component. For the experimental conditions, the
time in seconds has to be scaled up by a factor of 378.43 to obtain the corresponding
non-dimensional time. For both these Reynolds numbers, the effects of transients
during the process of linear instability play a major role and are compared here. The
slope of the envelope provides the linear temporal growth rate of a normal mode,
only if the amplitude of the disturbance is small enough to neglect the contributions
due to other modes and their nonlinear interactions. A strong similarity in trend
between experimental and computational results shows the accuracy of the numerical
methods used here. Interested readers are referred to Sengupta et al. (2010) for
details of the methods used. If there were only a single dominant mode present,
then the time variation would appear initially as an exponentially growing curve
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Figure 2. (a, b) Computed time variation of vorticity at the near-wake point R (xR = 0.5044,
yR = 0.0) shown for Re = 60 (a) along with its envelope (b). (c, d ) Experimental data from
Strykowski (1986) for fluctuating velocity (c) and the logarithm of the amplitude envelope (d)
for Re =49. Note that the dimensional time of 1 s in (c, d ) is equivalent to 378.435 of the
non-dimensional time.

(when the amplitude is small), which would finally culminate in a time-independent
amplitude after the nonlinear ‘saturation’ stage has reached. However, the variation
of ‘saturation’ amplitude from cycle to cycle indicates the presence of more than one
dominant mode. This variation of ‘equilibrium amplitude’ is seen unmistakably in
both the experimental and computational results.

Accuracy of the present computations can also be noted by comparing the numerical
results with the available experimental results for fluctuating quantities. In figure 3(a),
the computed equilibrium amplitude of the lift coefficient is plotted against Reynolds
number as discrete symbols. We note that the equilibrium value is the average of
amplitudes calculated over a long time interval for each Reynolds number case, after
the nonlinear ‘equilibrium stage’ in the evolution of lift coefficient is reached. In the
figure, the correlation obtained analytically by Norberg (2003), based on experimental
data, is shown by the continuous line. Computed results show that the discrete points



90 T. K. Sengupta, N. Singh and V. K. Suman

|A
e(

C
L
)|

40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6(a)

(b)

No FST

Norberg (2003)

Recr3 = 78.2071

Recr1 = 53.2907

Recr2 = 62.5326

Re

u 02 (
m

ax
)

50 60 70 80 90
0

0.005

0.010

0.015

0.020

0.025

Present results

Experiment

Figure 3. (Colour online) (a) Equilibrium amplitude of fluctuating lift variation plotted
against Reynolds number, using peak-to-peak computed data, and the experimental correlation
shown is from Norberg (2003). (b) Experimental data (blank circle) from Strykowski (1986) and
present computation (filled circle) showing variation of amplitude of fluctuating streamwise
velocity component with Reynolds number. The data were obtained at 8 diameter behind the
cylinder in the wake. The present computed data have been normalized with the experimental
value for Re = 70.
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do not fall on a single smooth curve; despite this, the match between the analytical
fit of Norberg (2003) and present computations is very good. The data in Norberg
(2003) were obtained by a single analytical function for a tunnel with a turbulent
intensity Tu = 0.06 %, while the computational data are affected by very low levels
of numerical noise of the high-accuracy method. Present computations also produce
strikingly similar results with the experimental results taken from Strykowski (1986)
in figure 3(b), where the mean square streamwise disturbance velocity data are shown
as a function of Re.

3. Hopf bifurcation and flow instability
Uniform flow past a circular cylinder experiences a Hopf bifurcation, taking it

from a stationary to a time-periodic state for the disturbances in the wake. Having
identified the first bifurcation as due to the linear instability mechanism, it is easy to
understand that the flow behaves like an amplifier at these lower Reynolds numbers.
During the instability, disturbance velocity can be represented as given in Drazin &
Reid (1981) as

u′(X, t) =

∞∑
j =1

[
Aj (t)fj (X) + A∗

j (t)f
∗
j (X)

]
, (3.1)

where {fj } is any complete set of complex space-dependent functions satisfying
boundary conditions. In (3.1), quantities with asterisks denote complex conjugates. If
the complex amplitude is given by Aj (t) = (constant) esj t , then the individual modes
are seen to be governed by dAj/dt = sjAj , in the early stage of disturbance growth.
This is the usual approach taken in the linear normal mode eigenvalue analysis,
with the attendant assumption that each mode influences the flow independently.
For this flow beyond the exponential growth stage, the disturbance field saturates
via nonlinear actions. In the normal mode approach, if one considers only a single
dominant mode, then the nonlinear saturation was explained by Landau (1944) in the
amplitude evolution equation by considering only the nonlinear self-interaction, i.e.

d|A|2
dt

= 2σr |A|2 − lr |A|4, (3.2)

where sj = σr + iω1 and lr is the real Landau coefficient. Note that Landau (1944)
did not address the issue of phase of the disturbance field and (3.2) was proposed
as a model without rigorous derivation. Subsequently, Stuart (1960) developed a
satisfactory differential equation for a plane parallel flow following the mathematical
foundation in Watson (1960), by retaining only the first term of a series solution.
In this formalism, the Landau coefficient is a complex quantity (l = lr + i li) and the
phase equation is additionally obtained as

dθ

dt
= ω1 − li

2
|A|2, (3.3)

where A= |A|eiθ and the amplitude equation remains the same as given in (3.2). These
two equations together are referred to as the Stuart–Landau equation, for a single
dominant mode with nonlinear self-interaction. In the literature, variations of the
Stuart–Landau equation are considered as in Provansal et al. (1987), Sreenivasan
et al. (1987), Sipp & Lebedev (2007), Dusek, Le Gal & Fraunie (1994), Thompson &
Le Gal (2004) and Noack et al. (2003). According to Sipp & Lebedev (2007), some
of these works ‘did not consider A as amplitude of any global structure, but only as
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a scalar variable (like a velocity component) taken at a particular point in the flow’.
In figure 3(a), a computational result for the equilibrium amplitude of fluctuating
lift coefficient is presented. We would get an identical time variation if vorticity
was plotted instead. This is because the lift is directly proportional to the area
integral of vorticity and is an attribute of global temporal instability suffered by such
flows. Experimental data taken from Strykowski (1986) are shown in figure 3(b) for
the squared streamwise displacement velocity at a fixed location. A strong qualitative
similarity between the experimental and computational results shows a global analysis
based on DNS will be able to obtain the correct spatial structure of global modes
and the Landau coefficient will be the same for every point in the domain.

The presence of more than one dominant mode in the nonlinear saturation stage
has led to attempts in explaining wake dynamics of cylinders by POD of numerically
simulated data by empirical Galerkin models. Pioneering efforts for this specific
flow problem, following the methodologies given in Kosambi (1943), Sirovich (1987)
and Holmes, Lumley & Berkooz (1996), are due to Deane et al. (1991) and Ma &
Karniadakis (2002) for two- and three-dimensional wakes, respectively. In contrast,
Noack & Eckelmann (1994) followed the carrier-field ansatz of Zebib (1987) for the
mathematical Galerkin model satisfying completeness of the basis functions requiring
hundreds of global eigenmodes. In the context of flow evolution in the cylinder wake
during the transient stage of flow instability, the presence of transients was studied
by Noack et al. (2003), with a goal to provide a hybrid approach combining the
‘strengths of empirical and mathematical Galerkin models’. The essence of this was
to introduce an additional mode termed the shift mode. This idea has been further
extended in Noack et al. (2009) and Tadmor et al. (2010), and according to these
authors ‘a key deficiency of both standard POD models and of linearization-based
models, is the exclusion of the interaction of oscillatory unsteadiness with the mean
flow. . . . It eludes linear stability analysis and (linear) balanced POD constructions,
due to the intrinsic nonlinearity of the interactions of the unsteady fluctuations
with the mean field.’ Introduction of the shift mode in Noack et al. (2003) was to
incorporate this nonlinear dynamical effect of the mean-field correction during the
transient stage. This is constructed from the steady solution and the time-averaged
flow for Re = 100, as shown in figure 7 of Noack et al. (2003). We note that the
shift mode has a top-down symmetry about the wake centreline. Introduction of
the shift mode is equivalent to splitting the unsteady Navier–Stokes equation into a
time-averaged mean field as affected by the time-dependent perturbation field via a
wave-induced stress that couples the two fields. Unlike the classical Reynolds stress
characterized by hydrodynamic turbulence, this wave-induced stress can be obtained
by phase averaging (or ensemble averaging). Note that phase averaging can take
care of one mode at a time in building up the additional stress that goes into the
mean-field correction. However, ensemble averaging will be computationally intensive
– more time would be required for this than solving the full Navier–Stokes equation
from first principles. It is already noted in Noack et al. (2003) that the ‘price for
efficient low-dimensional description of the reference simulation is a low accuracy
for transients’. In the present exercise, the direct simulation of the Navier–Stokes
equation is used to study the wake dynamics by using different analytical tools. Such
an approach will not only include the effects of the shift mode but would also have
multi-modal interactions built into the solution. In figure 2, one notices the presence of
multiple modes after the nonlinear saturation following the initial exponential growth.
In this work, we have provided an augmented Stuart–Landau equation, including the
interactions of active modes, aided by the DNS results.
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Despite the nonlinearity of (3.2), it is directly integrable to (Drazin & Reid 1981)

|A|2 =
A2

0

(A0/Ae)2 + [1 − (A0/Ae)2] e−2σr t
, (3.4)

where A0 is the value of A at t = 0. Here, Ae =
√

2σr/ lr represents the asymptotic
value of the solution for t → ∞. The condition σr > 0 corresponds to the case when
the Reynolds number exceeds Recr for linear instability. The approach of A to Ae

indicates independence of Ae on A0, a reason for which this flow is considered as an
oscillator. Such a solution is due to particular combination of the real part of the
Landau coefficient being positive and Re > Recr that takes the temporally growing
flow to a strictly time-periodic neutral state of ‘supercritical stability’. For supercritical
Reynolds numbers, σr ∼ (Re − Recr ), and thus a plot of Ae versus Re will represent
a parabolic variation between the two. It is noted that the Stuart–Landau model has
better applicability near Recr (see Drazin & Reid 1981) and it is tested furthermore
in the present analysis.

Figures 3(a) and 3(b) display existence of a discontinuous variation of Ae with Re

for the experimental and computational data, which in turn indicates the existence
of more than one dominant mode during the flow instability and its subsequent
nonlinear saturation. In figure 3(a), we have also shown the analytic correlation by
Norberg (2003) based on experimental data from a single wind tunnel. It is generally
believed that all these displayed variations originate via a Hopf bifurcation following
Stuart–Landau equation (3.2). But the discontinuities in the figures are due to either
the presence of multiple modes responsible for different Reynolds numbers or their
continuous presence at all Reynolds numbers, with different interactions for different
Reynolds number ranges. This behaviour, seen in experiments and computations,
can also be due to a combination of both these effects simultaneously. However,
the discontinuous variation is indicative of more than one leading mode and one
bifurcation, as is commonly modelled through Stuart–Landau equation. One can
interpret the Ae versus Re curve to begin with the first Hopf bifurcation, and there
is a second bifurcation originating at yet higher Reynolds number, with the segments
merging at the discontinuities. Computational data in figure 3(a) shown by discrete
symbols indicate the presence of two such discontinuities to originate from three
bifurcations.

An analysis is performed here for the bifurcation sequence noted for the flow in
figures 3(a) and 3(b). To our knowledge, this has not been done before for this flow.
For the experimental data shown in figure 3(b), a discontinuity is clearly noted near
Re =80, and our computed results in figure 3(a) reveal a similar discontinuity for Re

above 75. According to Stuart–Landau model, this curve should have been strictly
parabolic, while we have fitted quartic polynomials for the computed data in different
ranges of Reynolds numbers according to

|Ae|2 = k1iRe + k2iRe2 + k3iRe3 + k4iRe4, (3.5)

where Recri is the critical Reynolds number in the appropriate ranges, as defined in
table 1. The values for the equilibrium amplitude (Ae) obtained from DNS for different
Reynolds numbers are used in (3.5) for the first four points in each range of Reynolds
numbers indicated in the first column of table 1. Having obtained kij constants in
different ranges, they are used in (3.5) to draw the dotted lines as shown in figure 3(a).
In the figure, wherever the dotted line in each segment intersects the Reynolds number
axis, that point defines the corresponding Recri of that range and are listed in the last
column of table 1. The primary intention here is to show the proximity of the value
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Re range k1i × 102 k2i × 104 k3i × 105 k4i × 108 Recri

53.29–75 −2.0256 9.34156 −1.4345 7.4092 53.2907
62.53–100 −0.9750 3.3070 −0.3667 1.3940 62.5326
78.20–150 −1.1630 2.9389 −2.3580 0.6414 78.2071

Table 1. Coefficients used in the saturation amplitude equation given by (3.5).

of Recr2 for the second bifurcation with the Reynolds number for vortex shedding in
Homann (1936) and the kink noted in the (Ae versus Re) curve in Strykowski (1986),
as reproduced in figure 3(b). We also note that though (3.5) represents a quartic,
the cubic and quartic terms are of lesser importance. Thus, comparisons in figures 2
and 3 not only establish the accuracy of the computed results here but also support
the higher critical Reynolds number observed in Homann (1936), which is a direct
attribute of multiple Hopf bifurcations for this flow field.

We note that Noack et al. (2003) also have reported their computed Ae versus
Re using a Galerkin model, without and with the shift mode (models A and B,
respectively). Figure 12 of Noack et al. (2003) reports a very interesting result.
Model B reports a Hopf bifurcation at Re = 47, while model A reported Recr � 80,
which was also reported by Deane et al. (1991) using a similar model. Thus,
the shift mode is shown to be central in calculating the correct Recr . Presented
results using DNS automatically include the effects of the shift mode and despite
that the first Hopf bifurcation is indicated at higher Reynolds number than that
predicted by many other researchers. The reason must lie elsewhere, as different
experimental facilities report different critical Reynolds number because of different
extant background noise environment, and this aspect has not been investigated
theoretically or computationally. The effects of FST in determining Recr are studied
next to address this issue.

4. Role of free-stream turbulence in determining critical Reynolds number
In real flows, omnipresent FST with low amplitude of excitation triggers transition

to turbulence that would be essentially different from that predicted by computations
of a uniform flow over smooth geometries. FST, in general, appears as a random
event that is often modelled stochastically. However, in Sengupta et al. (2009b),
a new approach to model FST has been introduced, where a combination of
deterministic and stochastic approaches have been advanced and used in computing.
Other efforts in modelling FST are recounted in Sengupta et al. (2009b). In proposing
the model for FST, it is noted that for the statistical description of turbulence,
the variance or the second-order statistics represents the magnitude of turbulence
fluctuations, skewness or the third-order statistics represents deviation from symmetric
distribution and kurtosis or the fourth-order statistics describes the flatness of the tail
of the distribution. In experiments, low-frequency deterministic sources are present
inherently due to the design of facilities and have to be incorporated. One such model
has been developed and used in Sengupta et al. (2009b), which is reproduced in
figure 4(a) comparing data from one wind tunnel facility with the corresponding data
generated by the developed synthetic FST model. It is evident that low-frequency
components of FST match quite well. Computational results of flow past a cylinder
for Re = 55 were also reported in Sengupta et al. (2009b), using this FST model to
show the comparison with results of Homann (1936).
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Figure 4. (Colour online) (a) FFT of actual and modelled FST data obtained using (4.1).
(b) Comparison of equilibrium amplitudes of fluctuating lift variation plotted against Reynolds
number for cases without and with FST level of Tu = 0.06 % corresponding to the case of
Norberg (2003).

The FST is parametrized using a moving average model of order one, in which a
time series is created for the streamwise disturbance component of the velocity field
represented by (Sengupta et al. 2009b)

u′ = et + αet−1 +

N∑
j=1

aje
ik(x−ct), (4.1)

where the first two terms are given by a Gaussian distribution at successive time steps
with a standard deviation (σ ) and the last term represents low-frequency component of
the FST that is facility- and speed-dependent; c is the phase speed of the propagation
of the low-wavenumber coherent structures. Such a model is used at the inflow of
the computational domain to provide the background disturbance for solving the
Navier–Stokes equation as shown in figure 1. Sengupta et al. (2009b) noted that the
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exact value of c is not very important. Thus, at every time step of integrating the
VTE (2.2), input disturbance field is obtained by using (4.1) for every point of the
inflow.

The above FST model has been used to compute a flow field for a turbulence
intensity (Tu) of 0.06 %, a value for the wind tunnel used in Norberg (2003). The
receptivity aspect of flow past a circular cylinder has not yet been investigated in
a systematic manner and this is one of the motivations for the present exercise. In
figure 4(b), we have compared the computed Ae versus Re curves between the cases
of zero FST and Tu = 0.06 % to essentially highlight the difference for the first Hopf
bifurcation. The same procedure is used, i.e. fitting a quartic relation between A2

e and
Re, as given in (3.5). With the introduction of a small level of FST, Recr1 comes down
from 53.2907 to 49.8792, and this can explain why different experimental facilities
report different critical Reynolds numbers. This helps one understand the role of
numerical noise in reporting Recr by different numerical methods or by using the
same method with different numerical parameters. This also helps one realize that the
qualitatively different value of Recr in Homann (1936) is due to the totally different
working medium used in the experiment. It is consistent with the reported result
in Sengupta et al. (2009b), where it has been established experimentally that two
flows with the same Reynolds number can differ because of a different background
noise environment. During the receptivity stage of the corresponding linear instability,
such dependence on input disturbance is obvious. Control of primary instability can
be achieved by changing the working medium as in Homann (1936), where the
highly viscous oil used as the working medium contributed to effective dissipation of
background disturbances.

5. Proper orthogonal decomposition of flow past a cylinder
POD expansion was originally developed by Kosambi (1943) using the fact that

complex stochastic spatio-temporal dynamics can be projected onto a deterministic
eigenfunction set. Major works using POD related to stochastic fluid mechanics and
specifically to turbulent flows have been described in Holmes et al. (1996). The POD
technique that is used most often is the method of snapshots due to Sirovich (1987).
Another alternative is given in Sengupta & Dey (2004) in the context of reduced
order modelling by locating eigenvalues and eigenvectors of the covariance matrix
using Lanczos iteration. We report results here based on the method of snapshots.

In many fluid flow problems including the one considered here, coherent structures
in the flow can be defined with the help of POD using the method of snapshots
of Sirovich (1987). This is most useful when the spatio-temporal dynamics are not
affected by stochastic components and one is looking to develop a physical model for
such a dynamical system as attempted here. In this method, the number of snapshots
M used for the analysis is significantly smaller than the number of grid points used.
Data obtained by DNS provide the ensemble of snapshots taken at M instants of time.
Taking a reduced number of basis functions (from the complete set in a separable
Hilbert space) causes the mathematical modes to be projected as empirical modes.

In performing POD analysis, we choose a time horizon over which a time mean is
sought, and this is subtracted from the instantaneous quantity to get the fluctuating
component of the field. Velocity fields are often used for POD analysis, so that the
cumulative sum of the eigenvalues provides a measure of the kinetic energy. But, in
the present work (as well as in Sengupta & Dey 2004, Dipankar et al. 2007, Sengupta
et al. 2010) we have used the vorticity field, so that the eigenvalues provide a measure
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Figure 5. (Colour online) Computed lift coefficient variation with time for Re = 60, Re = 100
and Re = 250. Note the increasing presence of multiple modes with decreasing Reynolds
number. Subsequently, only the Re = 60 case is analysed for multiple modes in the POD
analysis and studying the LSE equation.

for the enstrophy of the investigated flow field. Qualitative features of the flow would
just be the same, if we use velocity instead of vorticity fields for the POD analysis.
If one defines this disturbance vorticity field as ω

′
(X, t) =

∑M

m =1 am(t)φm(X), then
φm values are obtained as the eigenvectors of the covariance matrix whose elements
are defined as Rij = (1/M)

∫ ∫
ω

′
(X, ti) ω

′
(X, tj )d

2 X , with i, j = 1, 2, . . . , M defined
over all the collocation points in the domain. The corresponding eigenvalues give
the probability of their occurrence and their sum, giving the total enstrophy of the
system.

In reporting the multi-modal nature of the flow evolution by POD, we have
purposely focused on the flow for Re = 60, for the following reason. In figure 5, we
depict time histories of the lift coefficient for Reynolds numbers of 60, 100 and 250.
It is evident from the figure that for Re = 250, there is only a single dominant mode
determining the equilibrium variation of lift. In comparison, for Re = 100, the presence
of more than one mode is evident from the displayed time variation. However, for
Re =60, the time history makes it abundantly clear that there are many active modes
not only during the transient phase but also after the nonlinear ‘saturation’ of the lift
coefficient.

We have analysed the flow field for Re =60 by taking the same time series for
three different overlapping time ranges, to account for the effects of transients on the
equilibrium flow. First, eigenvalues of the dynamical system are obtained for these
three cases presented in table 2. Cases A (200 � t � 430) and B (350 � t � 430) are
mostly compared in the present study to highlight the roles of the transients in terms of
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POD mode number Eigenvalues in the range Eigenvalues in the range Eigenvalues in the range
Case A: 200 � t � 430 Case B: 350 � t � 430 Case C: 0 � t � 430

1 1.662 2.497 0.8918
2 1.617 2.414 0.8674
3 0.484 – 0.7001
4 – – –
5 0.175 0.283 0.0941
6 0.174 0.280 0.0938
7 – – 0.0830
8 – – –
9 – – 0.0441

10 – – –
11 – – 0.0260
12 – – –
13 0.042 0.037 0.0227
14 0.040 0.036 0.0217

Table 2. Eigenvalues in different time ranges for Re = 60 for flow past a cylinder.

various POD eigenmodes. Case C comprehensively includes the full time range from
t = 0 to t = 430 and is used specifically to highlight the impulsive start of the flow.

In figure 6, the cumulative enstrophy content of the flow for Re = 60 is shown
for the three cases of table 2, with five snapshots taken in a unit time interval
for POD. For case C, the time range begins from an impulsive start to a state
where the fluctuating component of flow variables has reached an equilibrium time-
periodic state. Case B encompasses the range 200 � t � 430, which partly includes
the late-transient and the saturation stage of flow evolution, while the time interval
351 � t � 430 contains only the equilibrium stage. Total enstrophy content during the
equilibrium stage requires fewer modes for its correct description, as compared to any
case that includes the transient stage. However, for all the cases, the first 15 modes
account for nearly the total amount of enstrophy, with higher modes contributing
insignificantly. This is the reason for including only the first 14 POD modes in
table 2. We have ordered the modes in figure 6 in a numerical sequence, with blanks
to indicate missing modes. This convention follows the idea in Deane et al. (1991),
Ma & Karniadakis (2002) and Noack et al. (2003), which portends that the POD
modes primarily form pairs, and vortex shedding in the wake is a result of interaction
of these phase-shifted modes of the pairs. For example, for the flow past a cylinder,
modes 1 and 2 will always form a pair with the modes roughly 90◦ phase apart,
with an almost equal magnitude of the eigenvalues. Deane et al. (1991) proposed that
the vortex shedding is due to interactions between the leading pair of eigenmodes
a1(t) φ1(X) and a2(t) φ2(X) and defined the travelling characteristics of the vortex
street. Interestingly, Noack et al. (2003) pointed out that the dynamics of cylinder
wake are also influenced by the presence of a mode – termed by them the shift mode –
that is a solitary mode without forming a pair.

When POD modes appear in pairs, they are identified here in general as regular
POD modes. These POD modes have amplitude functions, whose time variation
resembles the time variation of the vorticity shown in figure 2. This is displayed by
the disturbance quantities following the Stuart–Landau equation. When modes appear
alone and/or do not follow this type of time variation, we term them anomalous
modes. Thus, anomalous modes appearing alone are always followed by a missing
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Figure 6. (Colour online) Cumulative enstrophy distribution among the eigenmodes for the
same data set, analysed for different time ranges. The complete range for the data taken from
t =0 to 430 is used for the curve with rhombus symbols, data taken from t = 200 to 430 are
shown by the curve with triangles, and data taken from t = 350 to 430 are shown by circles.
Note that the data segments with transients require more modes for an accurate representation
by POD.

mode, as shown by φ3 in figure 7 for case C. This is the rationale for the nomenclature
and numbering of modes used here. One encounters another type of anomalous mode
which appears in pairs, but whose time variation for the corresponding amplitude
function is different from that given by the Stuart–Landau equation. Eigenvalues
in the various cases of table 2 are arranged and, as numbered in figure 6, become
evident by looking at the eigenvectors shown in figures 7–9. We have decided upon
the numbering sequence by looking at the POD results for case C. It is noted that
modes 1 and 2, 5 and 6, and 13 and 14 form pairs, out of which the first two are
the regular ones and the last one is anomalous. The rest of the modes belong to the
first kind of anomalous mode. Modes form a pair when the eigenvalues are close
to each other and the eigenvectors show a clear resemblance with a phase shift of
90◦. Additionally, one can also note pairing by looking at the time variation of POD
amplitude functions, as shown later.

In figure 7, eigenvectors for case C are plotted with (φ1, φ2) and (φ5, φ6) representing
regular modes and the alternating vortical structures in the wake indicating the
above-mentioned phase shift noted in the equilibrium flow. However, the modes (φ13,
φ14) represent the anomalous mode of the second kind. Although the rest of the
eigenvectors including φ3 constitute anomalous modes of the first kind, similarity
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Figure 7. For caption see facing page.

between this type of mode with the shift mode of Noack et al. (2003) is noted below.
For case C, we note the presence of four such anomalous modes of the first kind.

In figure 8, the eigenvectors for case A are shown and the same set of regular pairs,
as indicated in table 2 by the eigenvalues, can be seen. This case is characterized by
the presence of transients in part, along with the equilibrium phase of the disturbance
growth. One notes the presence of an anomalous mode of the first kind (φ3) and
an anomalous mode of the second kind represented by (φ13, φ14). The regular pairs
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min –5.025
max 4.674 Mode 9

min –12.439
max 12.399 Mode 11

min –2.505
max 2.302 Mode 13

min –2.368
max 2.452 Mode 14

Figure 7. Leading eigenfunctions for the data set from t = 0 to 430 for Re = 60 following an
impulsive start. Modes 1 and 2, along with modes 5 and 6, form regular pairs. Modes 3 and
7 are anomalous modes of the first kind that appear without forming pairs. Modes 13 and 14
constitute anomalous modes of the second kind, and modes 9 and 11 are anomalous modes
of the first kind.

(φ1, φ2) and (φ5, φ6) define the periodic wake. The absence of early transient effects
in this shorter time interval 200 � t � 430 is characterized by a smaller number of
anomalous modes of the first kind. The anomalous modes of the first kind represent
essentially the transient effects.

For case B of table 2, the flow in contrast is solely in the equilibrium phase without
transients, and this shows up by the presence of only three pairs of regular modes,
as also seen in the eigenvector plots of figure 9. The utility of the POD analysis with
accurate DNS results is clear in the present exercise, as noted by the total absence
of anomalous modes. From figure 6, it is clear that these six non-trivial POD modes
account for more than 99 % of total enstrophy.

The nomenclature scheme is further explained by figure 10, where computed
amplitude functions (aj (t)) are plotted as functions of time for case C. These are
calculated from the DNS data and the obtained eigenvectors shown in figures 7–9.
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min –13.930
max 20.014 Mode 1

min –19.851
max 16.923 Mode 2

min –7.221
max 7.233 Mode 3

min –5.580
max 5.581 Mode 5

min –5.616
max 5.611 Mode 6

min –2.497
max 2.289 Mode 13

min –2.363
max 2.441 Mode 14

Figure 8. Eigenfunctions for the data set from t =200 to 430 for Re = 60 following an
impulsive start. Modes 1 and 2, along with modes 5 and 6, form regular pairs. Mode 3 is
an anomalous mode of the first kind. Modes 13 and 14 constitute anomalous modes of the
second kind.

It is clear from table 2 that the numerical precedence of a mode over others implies
a higher contribution of that mode to the total enstrophy. The near-equality of
magnitudes of successive eigenvalues indicates the formation of regular pairs and/or
pairs of the anomalous mode of the second kind, while isolated modes are identified as
the anomalous mode of the first kind (as seen e.g. from the third eigenvalue for cases
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min –11.656
max 14.245 Mode 1

min –4.211
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min –4.238
max 4.241 Mode 6

min –2.163
max 2.086 Mode 14

min –2.142
max 2.153 Mode 13

min –15.399
max 11.391 Mode 2

Figure 9. Leading eigenfunctions for the data set from t = 350 to 430 for Re = 60. All the
modes form orthogonal pairs; note the absence of the anomalous modes in this case. Number
and ordering of the modes are discussed in the text.

A and C in table 2). However, one cannot distinguish between regular and anomalous
modes of the second kind by looking only at the eigenvalues. For this purpose,
one needs to look at the amplitude functions as evaluated from the DNS data. The
amplitude functions of POD modes for case C are plotted in figure 10. This figure helps
in easy identification of both types of anomalous modes. While it is easy to understand
the trend of the time variation of paired modes at early times as the disturbance
grows from zero, it is not so for the anomalous modes of the first kind, for which the
amplitude functions vary rapidly in the transient stage. To generate POD amplitude
functions from the governing Navier–Stokes equation is not easy, as it amounts to
solving a set of stiff differential equations (even when pressure terms are neglected, as
in Deane et al. 1991 and Noack et al. 2003). The stiffness of the governing differential
equations for amplitude functions involving multi-modal interactions is revisited in
the next section with respect to the developed LSE equations. In figure 10, the
anomalous modes of the first kind show rapid excursion during the transient stage –
as seen clearly for a3. The same is true for a7, a9 and a11. While the amplitudes for a7,
a9 and a11 are much higher as compared to a3 in these plots, it is the third eigenmode
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Figure 10. For caption see facing page.

that dominates the transients. This is understood from the relative magnitudes of
eigenvalues and is discussed below with respect to (5.1) and (5.2).

The third eigenmode (φ3) shown in figures 7 and 9 has been called the anomalous
mode of the first kind and a similar mode in Noack et al. (2003) has been called the
shift mode, shown in figure 7 therein. The shift mode is an attribute of the variation
of the flow in a slow time scale as these ‘modes can be considered as travelling waves
on a slowly varying shift mode in the downstream direction’ with two symmetrically
placed vortices about the wake centreline. While we have obtained the anomalous
mode of the first kind directly from the POD of DNS data, the shift mode was
obtained differently. In Noack et al. (2003), 100 snapshots were taken uniformly over
a single time period defined by the Strouhal frequency. Thus, in analysing the data
for the shift mode, data were sampled that did not span over a full time period of
the shift mode variation. In our analysis, we have sampled data over a large number
of time periods (corresponding to the Strouhal frequency) – even for case B we have
taken more than eight such time periods. The shift mode in Noack et al. (2003) has
been interpreted to be present at all times. However, our analysis and the data in
figures 7 and 8 show the anomalous modes of the first kind to be effectively transient
in nature, as they are not seen in case B.
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Figure 10. (Colour online) Time-dependent amplitude functions of the POD modes of figure 7
shown for t = 0 to 430. Note that a1–a2, a5–a6 and a13–a14 form pairs, while a3, a7, a9 and a11

do not form pairs corresponding to an anomalous mode of the first kind. The pair a13–a14

does not follow the time variation given by either the Stuart–Landau or the LSE equations,
and is an anomalous mode of the second kind.

The shift mode in Noack et al. (2003) was constructed as a ‘mean-field correction’ –
equal to (u0−us), where u0 is the time-averaged solution of the unsteady Navier–Stokes
equation and us is the solution of the steady Navier–Stokes equation. Using a Gram–
Schmidt procedure, the shift mode was obtained from the ‘mean-field correction’. For
case A, a17 and a28 appear as isolated modes as revealed by the POD analysis. When
POD modes were calculated using 20 snapshots in unit time interval for Re =60
case, we did not note more than four anomalous modes of the first kind for case
A. Rarity of such modes provides adequate reason to call them anomalous modes,
whose properties are further investigated in this paper. Higher modes contribute trace
amounts of enstrophy, and pairings of these are not easily seen in eigenvector plots,
although eigenvalues indicate pairing. Corresponding eigenvectors are essentially at
the numerical noise levels of any calculations and display no coherence.

Pairing of modes with a phase shift of 90◦ suggests the following connection between
the POD modes with the amplitudes and eigenfunctions in (3.1) for the instability
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LSE mode number Normalizing coefficient (εi) Normalizing coefficient (εi)
[200 � t � 430] [350 � t � 430]

1 0.77406 0.88453
2 0.11425 0
3 0.08238 0.10140
4 0.01935 0.01314
5 0.00993 0.00091

Table 3. Normalization coefficients for instability modes in different time ranges for Re = 60.

modes as

Aj (t) = εj [a2j−1(t) + i a2j (t)], (5.1)

fj (X) =
1

2εj

[φ2j−1(X) − i φ2j (X)], (5.2)

where εj [= (λ2j−1 + λ2j )/
∑N

l=1 λl] provides the weight of the j th instability mode in
contributing to the total enstrophy. Thus, (a1, a2) constitute the real and imaginary
parts of A1 and (a5, a6) constitute A3 and so on, for the eigenmodes appearing as
pairs. However, A2 has only one component for the eigenvectors shown in figure 7.
Furthermore, a7 forms A4 and a9 constitutes A5, and so on. The POD amplitude
modes in lower-case are thus related to the instability amplitude functions indicated
by Aj , and we will call the latter the LSE modes as used in (6.1) to estimate the
nonlinear interaction. To our knowledge, this approach of relating POD eigenmodes
with the stability eigenmodes has not been done before and is attempted here for
the first time. In table 3, the normalization coefficients (εj ) for the amplitudes of the
stability modes (Aj ) are given, which are used in developing the LSE equations in the
next section.

In figure 9, leading POD eigenmodes for the data in the range 351 � t � 430 clearly
show the absence of anomalous mode of the first kind. All the modes present form
pairs, which are responsible for the periodicity of the flow from this time onwards. In
figures 8 and 9, while A1 and A3 contribute to overall dynamics in an unequal measure
(as noted in figure 6), their actions are also not in the same spatial region of the wake.
The first instability mode A1 is present globally with the dynamic range (as indicated
by the minimum and maximum values of vorticity in the figures) that is almost three
times that indicated for A3. The other important difference between the A1 and A3

modes relates to the fact that the latter becomes significant only after a distance of
a few diameters in the wake, as shown in figure 9. The role of the first anomalous
mode can also explain the success of flow control in Strykowski (1986), Strykowski &
Sreenivasan (1990) and Dipankar et al. (2007). In these references, the problem of
controlling the wake of a cylinder by a smaller control cylinder in the near wake was
investigated. It was noted that the control was effective when the control cylinder
was placed in a region that resembles the near-wake contours of φ3 in figure 7. We
note that apart from symmetry about the wake centreline, the exact shape of the shift
mode of Noack et al. (2003) and the anomalous mode (φ3) of figure 7 are distinctly
different. The location, size and shape of the anomalous eigenvector in figure 7 define
the active region for the control cylinders in Strykowski & Sreenivasan (1990) better,
as compared to the shift mode. Physically, when the control cylinder is placed in
this patch, it creates a separation bubble of its own, which corresponds to a very
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low-Reynolds-number flow. Within this bubble, diffusion is significantly active and
thus damps disturbances and, in effect, weakens A1. Such control is effective only up
to a certain Reynolds number, because of the change in mode shape with Re for φ3

and the fact that even if one controls the near-wake mode A1, A3 can still destabilize
the flow.

One of the strongest points of the present analysis is the accuracy with which the
Navier–Stokes equation is calculated that allows us to capture the anomalous modes
directly by POD. To understand the properties of the two different types of identified
anomalous modes, we have obtained the amplitude functions by noting that the
computed vorticity at the point R (defined in figure 2) in terms of the POD modes
is ω′

R =
∑

j [a2j−1(t)φ2j−1(xR, yR) + a2j (t)φ2j (xR, yR)]. Thus, using the eigenfunctions
of figure 7, amplitude functions for Re =60 are obtained and shown as a function
of time in figure 10. Here, a1 and a2 form a pair and are phase-shifted by π/2, with
respect to each other. Time variation of this regular pair is similar to that shown in
figure 2 for vorticity, which can be explained by the Stuart–Landau equation (3.2).
We also note that (a5, a6) corresponds to regular POD mode, with the time variation
given by the Stuart–Landau equation. The second type of anomalous modes is seen
in figure 10, corresponding to a13 and a14. Although these two amplitude functions
appear in pairs, their time variation is atypical of that given by the Stuart–Landau
model. Note that the second anomalous mode achieves its maximum where the first
anomalous mode has a negligible value. The instability portrait is obtained where the
initial disturbance growth is triggered by A2 due to its relatively higher contribution.
This is evident from the relative amplitudes of a3 vis à vis a1 to a6 in figure 9.

6. Landau–Stuart–Eckhaus equation
The Stuart–Landau equation (3.2) is incapable of explaining the discontinuity in

the Ae versus Re curve, implying the inadequacy of considering only the nonlinear
self-interaction. In the present work, we will attempt to explain the discontinuous
variation with the help of a new equation, based on the eigenfunction expansion
process of Eckhaus (1965), replacing (3.2) and (3.3). In this approach (Drazin & Reid
1981), the instability amplitude equation is given by

dAj

dt
= sjAj +

M∑
k=1

Nj (Ak), (6.1)

where the last term accounts for the nonlinear interactions among all the M modes,
including self-interaction. Eckhaus (1965) introduced the eigenfunction expansion in
a Galerkin method to yield the complex amplitude equation, including multi-modal
nonlinear interaction terms that also incorporate the self-interaction term of (3.2).

Since this equation is more generic and includes the Stuart–Landau equation as a
special case, we will refer to (6.1) as the LSE equation – mindful of the basic idea of
incorporating multi-modal interactions, which are completely absent in the Stuart–
Landau equation. We are not aware of any other efforts where the LSE equation
has been used to track instability of the flow past bluff bodies. In (6.1), the term
Nj (Ak) includes the nonlinear actions of all modes on the j th mode, including the
self-interaction term. Eckhaus (1965) suggested that the nonlinear interaction term be
given by Nj (Ak) = Aj |Ak|2. In the actual flow past a circular cylinder, there is more
than one mode that plays a major role in deciding the flow instability.
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The role of multiple POD modes in contributing to the actual signal is seen
in figure 11, where the computed data at R (xR =0.5044, yR =0) are plotted
and compared with the reconstructed results from the POD analysis for case A.
Figure 11(a) compares the DNS data with the reconstructed signal using the POD
modes 1, 2, 5 and 6. Reconstruction using these first two regular pairs of POD modes
reveals poor agreement during the disturbance growth stage. In contrast, when the
anomalous mode (POD modes 13 and 14) is added for reconstruction, a significant
improvement is noted during the growth stage as well, shown in figure 11(b). It is
also noted in figure 11(a) that retaining only the first two regular pairs actually
overestimates the solution in comparison to the DNS data during the growth phase,
while underestimating it in the nonlinear saturation stage. Thus, it is seen that there are
multiple modes that are active during the growth and nonlinear saturation stages in
varying degrees. In studying flow instability by the Stuart–Landau equation, one makes
the assumption that there is only one single dominant mode dictating the instability
and its nonlinear saturation. Even if one makes the allowance that the Stuart–
Landau equation can be applied to different modes (as in the normal mode analysis),
this places a strong restriction on these modes to act independently, during the non-
linear stage. An alternative to this was theoretically proposed by Eckhaus (1965) via
an eigenfunction expansion procedure, but has not been studied before for this flow.

In performing multi-modal analysis, one needs the modal amplitudes used in (6.1).
The unique feature of the present approach is to link the instability mode amplitudes
in the LSE equation with the POD eigenmodes. The actual model for the nonlinear
interactions and the requisite number of modes can be obtained in the following
way. We note from figures 6–11 that for the flow at Re = 60, there are two regular
pairs and two types of anomalous POD modes deciding the instability. Following
the suggestions provided in Landau (1944) and Eckhaus (1965), we consider the
nonlinear interactions (including self-interaction) as given in the following equations
for the first and the third LSE modes of figure 7, to highlight difficulties of solving
the multi-modal interaction problem. We consider the nonlinear interaction in the
LSE formalism for the first two leading modes given by

dA1

dt
= α1A1 + β11A1|A1|2 + β13A1|A3|2, (6.2)

dA3

dt
= α3A3 + β31A3|A1|2 + β33A3|A3|2. (6.3)

It is not possible to obtain a closed-form expression for the instability amplitudes,
even in the case of a system comprising only two modes while including nonlinear
interactions, as given by (6.2) and (6.3). Even obtaining numerical solutions of (6.2)
and (6.3) is not at all straightforward, as these constitute a set of stiff differential
equations because of different orders of magnitudes for the growth rates of A1 and
A3. This will be evident from the values of βij in these equations. We note that
the POD amplitude functions of figure 10 are normalized and do not show their
relative importance – while the actual normalization to be used was shown in relation
(5.1). Here, we have used direct simulation data to obtain the various coefficients
in (6.2) and (6.3). Using the data in table 3, one can also obtain A1 and A3 from
DNS.

The problem of stiffness arises because of different growth rates of the fundamental
solutions for A1 and A3, and that can be avoided by various techniques. Here, we
have used the compound matrix method. This method has been developed to solve
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Figure 11. Comparison of reconstructed POD data with the DNS results for Re = 60 stored
at a location (xR = 0.5044, yR = 0). (a) POD modes 1, 2, 5 and 6 for the reconstruction
that shows overestimation in the growth phase and underestimation in the equilibrium stage.
(b) The anomalous 13th and 14th POD modes, when added, show very good agreement with
the DNS data at the growth as well as at the equilibrium stage.

stiff differential equations arising in instability problems, as discussed in Drazin &
Reid (1981), Allen & Bridges (2002) and Sengupta & Venkatasubbaiah (2006). In the
coupled set of equations (6.2) and (6.3), we will have two fundamental solutions with
growth/decay rates differing by orders of magnitude, and that makes the differential
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equation system stiff. Compound matrix method provides an easy way to avoid this
by reformulating the problem in terms of new dependent variables (as described
in Drazin & Reid 1981, Allen & Bridges 2002 and Sengupta & Venkatasubbaiah
2006 and references therein). Here we transform (6.2) and (6.3) by introducing a new
variable Y = A1A3 to remove the stiffness and to obtain a single evolution equation
for it:

Y −1 dY

dt
= α + β1|A1|2 + β3|A3|2, (6.4)

where α =α1 + α3, β1 = β11 + β31 and β3 = β13 + β33. Equation (6.4) can
be used along with the direct simulation data for Re = 60 to obtain the
following complex coefficients: α = (0.12856, −0.34242), β1 = (−95.722, −1026.225)
and β3 = (2039.764, 61376.693). One can clearly see that the nonlinear interaction
coefficients β1 and β3 are of different orders of magnitude. This actually helps one
realize that for the overall amplitude, the third mode (A3) plays only a perturbative
role, with the leading-order mode satisfying dA1/dt = α1A1 + β11A1|A1|2 – as much as
in the Stuart–Landau equation. The use of direct simulation data allows one to obtain
α1 = (0.03706, 0.75938), which in turn gives α3 = (0.09149, −1.10180). One also obtains
β11 = (−20.330, 52.901) and β31 = (−75.391, −1079.126). Having obtained β11 and α1,
(6.2) can be used to obtain the time-averaged value for β̄13 = (−3484.41, 8821.94).
Similarly, β̄33 can be obtained, which also takes a large value. Such large values
of nonlinear coefficients indicate that A3 is loosely coupled in these equations
with A1.

In constructing the governing equations (6.2) to (6.4), we have purposely excluded
the effects of A2, as this anomalous mode is truly transient in contrast to that seen in
figure 10, where a3 settles down to a constant non-zero value beyond t =350. Thus,
the time variation for a3 shows that the mode continues to significantly affect the
dynamics beyond t = 350. However, this is illusory for the following reasons. First,
table 3 shows that this mode in the nonlinear framework of the LSE equation (6.4)
is proportional to ε2

2 , as compared to the first regular mode that is proportional to
ε2
1 . This means a meagre relative contribution of 2.17 % by the anomalous mode in

comparison to the first regular instability mode. Second, when the anomalous mode
continues to have the same level of contribution beyond t = 350 in that period, the
first, third and seventh instability modes collectively contribute significantly compared
to A2 in deciding the overall dynamics.

To validate the correctness of the LSE equation and its numerical solution, in
figure 12, the solution obtained for (6.4) is used and compared with the solution
constructed from the POD data. We have only compared the real part of Y with
the POD data and the match testifies the correct correlation of the POD eigenmodes
with the LSE instability modes. The imaginary part is simply phase-shifted and
shows equally good comparison between the reconstruction from the solution of the
LSE equation and the POD data. This process of studying multi-modal nonlinear
interactions has not been attempted before, because of a misconception that POD
eigenmodes can only provide approximate stability modes. The present exercise shows
that one can obtain very accurate instability mode information from the POD
modes. Figure 12 also testifies that the subsequent reformulation of the latter by
the compound matrix method is a correct procedure to solve the resultant stiff
differential equations.
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Figure 12. (Colour online) Comparison of the real part of Y = A1A3 calculated using (6.4)
and compared with the value of Y calculated using the POD data.

7. Summary and concluding remarks
The instability of flow past a circular cylinder is investigated following dynamical

system and bifurcation theory approaches. The study reported here is completely de-
pendent upon the high-accuracy solution of the Navier–Stokes equation in computing
the time-dependent disturbance field by a dispersion-relation-preserving methodology
reported in Sengupta et al. (2010). These computed results for the fluctuating vorticity
field and the lift coefficient match extremely well with the similar trends reported in
earlier experimental results of Homann (1936) and Strykowski (1986).

Some of the features of these results are delayed vortex shedding, as in Homann
(1936), and a non-parabolic variation of the equilibrium amplitude of the disturbance
field with Reynolds number in Strykowski (1986). Both the attributes helped us
identify (i) the multi-modal nature of the flow past a circular cylinder and (ii) more
than one Hopf bifurcation during flow instability, as shown in the comparisons
between experimental and computational results in figures 2 and 3. With the help
of the plot of computational data for the equilibrium amplitude versus Reynolds
number, we have estimated three different critical Reynolds numbers, obtained using
(3.5) and indicated in table 1. All the bifurcations in table 1 are for Reynolds numbers
above the critical Reynolds number corresponding to the first Hopf bifurcation (as
obtained in Jackson 1987, Zebib 1987, Dusek et al. 1994 and Morzynski et al. 1999).
Here, attention is focused on the flow past a cylinder for Re = 60 that exhibits higher
multi-modal features in figure 5, as compared to flows for Re = 100 and 250. We have
focused our attention also on the second Hopf bifurcation for a Reynolds number
slightly above Re = 60. This bifurcation can be related to the experimental observation
of Homann (1936), who had reported the onset of vortex shedding for Re � 65.

The reason for different experimental facilities (and also different numerical
methods) reporting different Recr is related to the receptivity of the flow field to
background disturbances during the linear temporal growth of the disturbance field
for post-critical Reynolds numbers. This has been specifically demonstrated using
FST models (from Sengupta et al. 2009b) in solving the Navier–Stokes equation.
Specifically in figure 4, we show that the critical Reynolds number comes down from
53.29 to 49.87 for an FST level of Tu = 0.06 %, which was reported in Norberg (2003).
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The multi-modal nature of the flow has been investigated before using POD in
Deane et al. (1991), Ma & Karniadakis (2002) and Noack et al. (2003), despite the
flow featuring a single Strouhal number at post-critical Reynolds numbers. It has
been pointed out in Deane et al. (1991) and Ma & Karniadakis (2002) that the
alternate vortex shedding is a consequence of interactions between the POD modes
forming pairs, with a nearly fixed phase shift of 90◦. At the same time, in Noack
et al. (2003), a new isolated mode termed the shift mode is purported to play a
major role in the wake dynamics. This was obtained via an indirect procedure from
a Galerkin representation. Here, principal eigenmodes have been obtained directly
from POD analysis using the method of snapshots of Sirovich (1987) and a new class
of modes has been reported. These have been correctly ordered and their connection
to the instability modes has been established for the first time. In particular, we have
identified two classes of anomalous modes, one of which appears to be similar to the
shift mode, with eigenvectors bearing some qualitative resemblance. This has been
termed here the anomalous mode of the first kind. However, this appears in multiple
numbers, as compared to the single mode predicted in Noack et al. (2003), which was
identified as the shift mode. Also, this shift mode was considered to be important at
all times, while the anomalous mode of the first kind is seen to be significant only
during the transient stage of flow evolution. The reason for this difference has been
explained by linking the POD modes with the instability modes, and it is shown that
at the equilibrium stage these anomalous modes have relatively lesser contributions
than thought of, as discussed in § 5 and table 3. These aspects of the roles played
by different modes are understood by the eigenvalues and eigenfunctions shown in
figures 6–9.

Amplitude functions of the POD modes have also been obtained from DNS, which
allows us to identify the anomalous modes of the second kind. Although they appear
in pairs, their time variation is different from the regular pairs, which follow the
Stuart–Landau equation (3.2). While they grow as regular modes to begin with, they
do not achieve nonlinear saturation. Instead, they appear as wavepackets and are
only important during the transient stage of flow evolution as shown in figure 10.

More importantly, multi-modal nonlinear interactions among the modes have been
modelled here by the LSE equation developed in (6.1)–(6.3). These equations are
totally and conceptually different from the usual Stuart–Landau equation used for the
analysis of a single mode in the literature. Most importantly, in this model, mutual
interactions among different modes are included, apart from the self-interaction.
Eigenvalues in table 1 and eigenvectors in figure 7 identify two LSE modes to be the
most dominant during the equilibrium stage. However, during the growth stage, the
instability is strongly affected by the anomalous modes. In figures 7–9, two types of
anomalous modes are seen, given by POD modes 3, 7, 9, 11 and 13/14.

The role of various modes is further explained by comparing the DNS data with
various combinations of POD modes in figure 11. The multi-modal dynamics of flow
instability are studied further using the LSE equation, and it is noted that this is
much more difficult to study because of the stiff nature of the differential equations
involved, as given by (6.2) and (6.3). Following the compound matrix method, a new
equation is obtained, which is solved for the growth and the interaction parameters
for the compound matrix variable Y . In figure 12, the reconstructed solutions of
the LSE equations are compared with the POD modes and they are in very good
agreement with each other. Thus, the present exercise clearly establishes the role of
multiple modes and multiple Hopf bifurcations for the flow past a cylinder. This
has been done using very accurate numerical solution of the Navier–Stokes equation
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without any additional modelling. Also, the interactions of the LSE modes have been
established via the LSE equations and reported here for the first time.

Having been able to show the importance of multiple instability modes in
determining vortex shedding behind a circular cylinder, it is natural to formulate
these interactions through the LSE equations that are extensions to the Stuart–
Landau equation for a single dominant mode only. Accurate direct simulations open
up possibilities for the linear and nonlinear instability studies for bluff-body flows.
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